

* داوطلب گرامى، عدم درج مشخصات و امضا در مندرجات جدول زير، بهمنزلهٔ عدم حضور شما در جلسهٔ آزمون است.

PART A: Vocabulary

Directions: Choose the word or phrase (1), (2), (3), or (4) that best completes each sentence. Then mark the answer on your answer sheet.

1- When you -------- meeting, it is important to speak clearly, confidently and at a good pace.

1) assess
2) propagate
3) address
4) impress

2- People like the newly proposed system, but because of the costs involved we do not believe it is ---------, and we need to look for other options.

1) compliant
2) defensive
3) ingenuous
4) viable

3- The country in question is very poor, and one in seven children dies in

1) infancy
2) nutrition
3) malfunction
4) mortality

4- I don't consider myself to be particularly $-\ldots-\ldots$, but when I'm given a job, I make sure it gets done.

1) industrious
2) spontaneous
3) risky
4) unexceptional

5- The new airliner is more environmentally-friendly than other aircraft, its only \qquad being its limited flying range.

1) demand
2) drawback
3) controversy
4) attribute

6- The celebrity will ------- assistance from the police to keep stalkers away from his property.

1) extend
2) invoke
3) absolve
4) withdraw

7- When plates in the Earth's crust slide or grind against one another, an earthquake with devastating consequences may be

1) derived
2) surpassed
3) triggered
4) traced

PART B: Cloze Test

Directions: Read the following passage and decide which choice (1), (2), (3), or (4) best fits each space. Then mark the correct choice on your answer sheet.

The new species was named Maiacetus inuus, which means "mother whale,"
(8) ---------- in the family Protocetidae. Assignment to a new species was justified due to critical differences from other protocetid whales, such as solidly co-ossified left and
right dentaries (lower jaws), (9) --------- in the ankle, and significant disparity in hind limb elements. The fossils show (10) ---------- this new species' length is unimpressive relative to some extant (living) whales, but still, Maiacetus inuus measures a respectable 2.6 meters.
8- 1) placed
2) that placed
3) was placed
4) and was placed
9- 1) there were variations
2) varying
3) variations
10- 1) when
2) that
4) which varied

PART C: Reading Comprehension:
 Directions: Read the following three passages and answer the questions by choosing the best choice (1), (2), (3), or (4). Then mark the correct choice on your answer sheet.

PASSAGE 1:

Red Lead has proved outstandinly suitable as a pigment for priming coats on steel, and is fully effective in cholorinated rubber coatings. For reason of environmental protection and accupational health, the use of toxic lead compounds is diminishing. Zinc phosphate is used instead, although it does not have the same corrosion protection effect. Conventional metal pigments such as lead dust, aluminum bronze and Zinc dust produce diffusion proof coatings with good mechanical properties.

In the case of aluminum bronze and Zinc dust, stabilization of the paint is required to prevent gelatinization. Iron oxide, chromium oxide and titanium dioxide pigments commonly used in the paint industry, and suitable for finishing and top coats. Zinc oxide, white lead and lithopone are, however, unsuitable. All inert minerals are suitable as extenders. Carbonate-containing extenders may only be used if no stringent requirement have to be satisfied as regards resistance to water and chemicals.

The choice of solvents is practically unlimited. Xylene or other alkylbenzene are generally recommended.

11- Which of the following pigments provide ionic resistance in the coatings?

1) Iron oxide and titanium dioxide.
2) Zinc phosphate and titanium dioxide.
3) Red lead and Zinc phosphate.
4) Lead dust and Zinc dust.

12- Some of the extenders are used in the paint. The reason could be as following;

1) Provide strong protection against water and chemicals.
2) Provide suitable performance like pigments.
3) Provide a moderate resistance against water and chemicals.
4) They are able to produce strong protection aginst corrosion environment.

13- What pigments are not suitable to use in chlorinated rubber paints?

1) Red lead and white lead.
2) Zinc oxide and lithopone.
3) Zinc phosphate and Zinc oxide.
4) Red lead, Zinc phosphate and Zinc oxide.

14- Which of the following are recommended using in the paint based on chlorinated rubber?

1) Zinc oxide, white lead and carbonate containing extender.
2) Red lead, Zinc phosphate and Zinc oxide.
3) Aluminum Zinc and modified caster oil.
4) Zinc phosphate and xylene.

15- What pigment(s) is (are) used in finishing?

1) lithopone
2) chromium oxide
3) Zinc dust and lithopone
4) Zinc oxide and chromium oxide

PASSAGE 2:

Epoxy resins, depending on their molecular mass, can be cured with curing agents by polyaddition via their epoxy or hydroxyl groups. Polyamines, polythiols and Polyisocyanates are suitable for room temperature cune. Polyanhydrides, polyphenols, acids and carboxy-functional polyesters are suitable for hot cure. Epoxy resins can also be cured by Polycondensation with amino resins or phenolic resins. Epoxy resins can be polymerized with catalysts such as tertiary amines, boron trifluoride complexes, ferrocense and triarylsulfonium salts.

Only the low molecular mass liquid bisphenol A and bisphenol F epoxy resins or their mixtures are suitable for formulating solvent-free coatings. Reactive diluents are often added to these resins. They react with the curing agent and lower the viscosity of the epoxy resin to improve processing properties. Aliphatic polyamines are industrially very important because they are highly reactive and can cure epoxy resins at ambient temperature. Epoxy resin coatings that are cross-linked with aliphatic amines have the highest solvent resistance.

Cycloaliphatic amines have to be modified and accelerated to permit curing at room temperature. These amines give a very attractive appearance to the cured film and mainly used for decorative wall and floor finishes. Aromatic amines are solid, but can be cured for cold cuing by adduct formation and acceleration. Films based on such curing agents have a glasslike appearance and extremely good resistance to acid.

16- In ambient temperature, which of the following hardeners are convenient?

1) polythiols and polyisocyanats.
2) polythiols and polyanhydrides.
3) polythiols, polyisocyanats and polyphenols.
4) polyanhydrides and carboxy-functional polyesters.

17- Which of the following is correct?

1) Ferrocenes are kind of special pigments.
2) Epoxy resins films are formed by only solvent evaporation.
3) Epoxy resins are cured only via Polycondensation and using catalysts.
4) Epoxy resins are cured via polyaddition, Polycondensation and also through catalysts.

18- What does reactive diluents do?

1) They provide highest solvent resistance in the film.
2) They increase paint viscosity and react with epoxy.
3) They reduce paint viscosity and react with hardener.
4) They ared independant in terims of caring.

19- Which sentence of the following is correct?

1) Aliphatic polyamines can be cured with epoxy at room temperature.
2) very high resistance against acidic media can be reached using aliphatic amines.
3) cycloaromatic amines are mainly used for decorative wall and floor finishes.
4) Aliphatic amines can provide the lowest solvent resistance.

20- Aliphatic in comparison with cycloaliphatic amines:

1) A nice appearance of the cured film is produced when cycloaliphatic amines are used.
2) The same performance when produced cured through epoxy resins.
3) The highest water resistance is formed when aliphatic amines are used.
4) Curing at ambient temperature is not possible unless bisphenol F epoxy nesins are consumed.

PASSAGE 3:

One way of lowering the solvent content of a paint is to reduce the viscosity during application by physical or chemical methods. Dilution of solvent-containing paints can be minimized by not spraying. The solids content of solvent-containing paints can be increased by using solvents with solubility parameters that largely correspond to those of the binder, by adding viscosity-reducing cosolvents, or by using additives. The formation of hydrogen bonds between hydroxyl and carboxyl groups increase the viscosity, which however can be overcome by adding small amount of alcohols. The binders used in high-solids system have a much lower intrinsic viscosity than conventional high-solvent paints. This is usually achieved by reducing the mean number-average molecular mass or by using a narrow molecular mass distribution. The use of esterification and transesterification catalysts in polycondnsation reactions can contribute to a saving in solvent in this manner. Lead and tin compounds have proved particularely suitable for this purpose, but not appropriate for all applications on account of their toxicity. Production of the resin in solution followed by concentration to a higher solids content is a further possibility. On account of the low solvent content in the formulation further measure may, however, be required because the binder is also responsible for flowability, antisagging on vertical surface, prevention of wrinkle formation and controlling the drying behavior.

21- How is it possible to reduce paints viscosity?

1) reducing solvent and pigment into it
2) increasing solvent and temperature.
3) reducing solvent into it.
4) make it cold.

22- Which of the sentence is correct?

1) Alcohols and carboxylic acid are used in the paint in order to balance viscosity.
2) Alcohol is one of the most important viscosity reducer in paint.
3) Alcohols can change viscosity when hydrogen bonds are taken place.
4) Generally in the paint, alcohols can incuease viscosity.

23- The resin used for high solid system, should have:

1) lower molecular mass.
2) Higher molecular mass.
3) broader molecular mass distribution.
4) Higher viscosity than conventional solvent system.

24- Tin compound is used as:

1) efficient pigment.
2) catalyst and pigment.
3) reactant to react with solvents.
4) pesin catalyst to have lower viscosity in high solid system.

25- In high solid system, resin is responsible to have:

1) mar resistant.
2) sagging and wrinkle.
3) good leveling for the horizontal surface.
4) good leveling for the vretical surface.

مدلسازى سيستّرهاى پلكيمرى:

צץ- معادلئ ديفرانسيل بيانگر توزيع دما براى جريان يكـ سيال با سرعت
كرمازا كدام است؟
$\rho \mathrm{c}_{\mathrm{x}} \frac{\partial \mathrm{T}}{\partial \mathrm{x}}=\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{k} \frac{\partial \mathrm{T}}{\partial \mathrm{x}}\right)+\stackrel{\circ}{\mathrm{Q}}, \stackrel{\circ}{\mathrm{Q}}>0(\mathrm{l}$ $\rho \mathrm{c} \mathrm{v}_{\mathrm{x}} \frac{\partial \mathrm{T}}{\partial \mathrm{x}}=\frac{\partial}{\partial \mathrm{y}}\left(\mathrm{k} \frac{\partial \mathrm{T}}{\partial \mathrm{y}}\right)+\stackrel{\circ}{\mathrm{Q}}, \stackrel{\circ}{\mathrm{Q}}>\circ(\zeta$ $\rho c \mathrm{v}_{\mathrm{x}} \frac{\partial \mathrm{T}}{\partial \mathrm{x}}=\frac{\partial}{\partial \mathrm{y}}\left(\mathrm{k} \frac{\partial \mathrm{T}}{\partial \mathrm{y}}\right)+\stackrel{\circ}{\mathrm{Q}}, \stackrel{\circ}{\mathrm{Q}}<\circ(\Gamma$ $\rho c \mathrm{v}_{\mathrm{x}} \frac{\partial \mathrm{T}}{\partial \mathrm{x}}=\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{k} \frac{\partial \mathrm{T}}{\partial \mathrm{x}}\right)+\stackrel{\circ}{\mathrm{Q}}, \stackrel{\circ}{\mathrm{Q}}<0(\uparrow$
م معادلأ ديفرانسيل مربوط به انتقال حرارت و نفوذ جرم در حالت نايايدار و در طول يكـ استوانه، بهترتيب كدام است؟

$$
\begin{gathered}
a=0, b=r() \\
a=0, b=-r(r \\
a=1, b=1(r \\
a=1, b=-1(r
\end{gathered}
$$

ج جواب عمومى معادلئ ديفرانسيل

$$
\begin{array}{r}
y=x e^{-x}+c_{c_{r}} e^{-r x}() \\
y=c_{1} e^{-x}+c_{r} e^{-r x}(r \\
y=\left(c_{1}+x\right) e^{-x}+c_{r} e^{-r x}(r \\
y=c_{1} e^{-x}+\left(c_{Y}+x\right) e^{-r x}(r
\end{array}
$$

كدام مورد مىتواند توزيع دما در يك پوسته استوانه مطابق شكل را نشان دهد؟

$\mathbf{r}=0$
 بر دماى بىبعد آن بهصورت زير است. توزيع گَذراى دما كدام است؟

$$
\left\{\begin{array}{l}
\frac{\partial \mathbf{u}}{\partial \mathbf{t}}=\frac{\partial^{r} \mathbf{u}}{\partial \mathbf{x}^{r}} \\
\mathbf{u}(\circ, \mathbf{x})=\sin \mathbf{x}
\end{array}\right.
$$

$$
\begin{gathered}
u(x, t)=\sin x e^{-t} \\
u(x, t)=\sum_{n=1}^{\infty} n \sin x e^{-n^{r} t}(r \\
u(x, t)=\sin x e^{-\pi^{r} t}(r \\
u(x, t)=\sum_{n=1}^{\infty} \pi \sin x e^{-n^{r} t}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{r}{r}(1 \\
& \frac{r}{r}(r \\
& -\frac{1}{r}(r \\
& -\frac{r}{r}(q
\end{aligned}
$$

 قادهشده با استفاده از روش نيوتن، غلظت جزو واكنشدهنده در خروجى با حدس اوليه

$$
\begin{aligned}
& \mathbf{r}=1 \mathrm{C}^{r}\left(\frac{\mathrm{~mol}}{(\mathrm{lithr}}\right) \\
& \mathrm{V}=1 \text { (lit) }
\end{aligned}
$$

 آيد. حدس اول و دوم كدام هستند؟

$$
1,1 \wedge, 1,0(1
$$

$$
1, r v \Delta \text { g } 1, \Delta(r
$$

$$
1,1 \lambda, r(r
$$

$$
1, r v \Delta \text { g } r(4
$$

$$
\begin{aligned}
& \\
& \frac{1}{4}(\sqrt{r}+1)() \\
& \\
& \frac{1}{r}(\sqrt{r}+1)(r \\
& \mathbf{h}=1 \\
& \frac{1}{4}(r \sqrt{r}+1)(r \\
& \frac{1}{4}(r \sqrt{r}+1)(r
\end{aligned}
$$

६६- كدام رابطه بيانتر عدد بدون بُعد رينولدز است؟

$$
\begin{aligned}
& \text { Re = } \frac{\text { نيروى مومنتار فير }}{\text { نيار }}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Re}=\frac{\text { نيروى گرانروى وزن }}{\text { وزی }} \\
& \operatorname{Re}=\frac{\text { نيروى }}{\text { نيرانروى فشار }}
\end{aligned}
$$

تأمين تعادل لوله چند كيلونيوتن است؟
rm كـ

$$
\begin{aligned}
\frac{r_{1}+r_{r}}{r}<r_{m}<\frac{r\left(r_{1}+r_{r}\right)}{r}(r & r_{1}<r_{m}<\frac{r_{1}+r_{r}}{r}() \\
r_{1}<r_{m}<\frac{r_{1}+r_{r}}{r}(r & \frac{r_{1}+r_{r}}{r}<r_{m}<r_{r}(r
\end{aligned}
$$

(1)

 حر كت درمى آيد. نيروى لازم براى حركت اين صفحه بر حسب dyne كدام است؟

 (a') ور فر كانسهاى كم بهتر تيب چه تغييرى مى الاستنـند؟ (relaxation time)

- - FF (Y nm نانو ذرات A و B كدام مورد مى تواند باشد؟

$$
\begin{aligned}
& \text { (Y تراكمنایذير، چرخشى } \\
& \text { (} \\
& \text {) (}
\end{aligned}
$$

~ در يك سوسپانسيون حاوى ذرات ميلهایشكل با افزايش نسبت قطر به طول ذره ضريب اينشتن KF FF جزء \$m packing بدتر تيب چحگُونه تغيير مى
Y (ץ) افزايش، كاهش
) () كاهش، كاهش

كدام رفتار در سيالات ويسكوالاستيكـ پليمرى ديده نمىشوى؟ YD

(
() گَرانروى برشى ثابت
 كداميك از موارد زير درست است؟ برش

ץ) با افزايش شعاع يك لوله، استفاده از عايق گرمايى به منظور كاهش اتلاف گرما منطقىترشده و كار آيى بيشترى دارد.

قانون ديگرى بايد استفاده كرد.
 بهصورت

سطح از اين ديوار كدام است؟

$$
\begin{aligned}
& \mathrm{k}\left(\mathrm{~T}_{1}-\mathrm{T}_{\mathrm{Y}}\right) / \mathrm{L}(1 \\
& -r k\left({ }^{(} C_{1} L+C_{r}\right)(r \\
& \mathrm{k}\left(r_{1} \mathrm{C}_{1} L^{r}+\mathrm{rC}_{\curlyvee} \mathrm{L}\right)(\Gamma
\end{aligned}
$$

－FA توزيع دما در حالت غيردائم در يكى لحظه در يك ديوار بهصورت زير است．كدام پاسخ در مورد عدد بايوت（Bi）و

روشحل درست است؟

ثابت از يكى طرف عايق بوده، از سمت ديگر در معرض سيالى با دا دما صفحات نيز

（1）	（r）	h， T_{∞}	 Y

 هيدروديناميكى است، معادله لايه مرزى هيدروديناميكى بهصورت تابعى از عدد رينولدز كدام است؟

$$
\begin{aligned}
& \delta=\sqrt{1 r} \operatorname{Re}^{\frac{1}{r}} \cdot \mathrm{x} \\
& \delta=\sqrt{1 r} \operatorname{Re}^{-\frac{1}{r}} \cdot \mathrm{x}
\end{aligned}
$$

$$
\delta=\sqrt{\wedge \wedge} \operatorname{Re}^{-\frac{1}{r}} \cdot \mathrm{x}
$$

$$
\delta=\sqrt{\Gamma Y} \operatorname{Re}^{-\frac{1}{\Gamma}} \cdot \mathrm{X}
$$

كدام كزاره درست است؟

 r

حr－حركت هوا از روى يكى استوانه جامد و موازى آن در يك كار انتقال حرارت منجر به رابطه زير شده است： $\mathbf{N u}=1, \Gamma \Delta \operatorname{Re}^{0,9} \mathbf{P r}^{0 / \mu \mu}$

$$
\begin{aligned}
& \text { ضريب انتقال جرم جابهجايى كدام است؟ } \\
& \mathrm{k}_{\mathrm{c}}=1, \Gamma \Delta \frac{\mathrm{D}_{\mathrm{AB}}}{\mathrm{~L}} \operatorname{Re}^{1 / \Gamma \Delta} \operatorname{Pr}^{0 / \Gamma \mu} \text { () } \\
& \mathrm{k}_{\mathrm{c}}=1, \Gamma \Delta \frac{\mathrm{D}_{\mathrm{AB}}}{\mathrm{~L}} \operatorname{Re}^{0 / 9} \mathrm{SC}^{0 / \Gamma \mu}(\tau \\
& \mathrm{k}_{\mathrm{c}}=1, \Gamma \Delta \mathrm{Re}^{0 / 9} \operatorname{Pr}^{0 / \mu r}(\Gamma \\
& \mathrm{k}_{\mathrm{c}}=\mathrm{Re}^{1 / \tau \Delta} \mathrm{Sc}^{0 / \Gamma \tau}(\varphi
\end{aligned}
$$

> Bi<<1 (1Bi>>) (个 Bi >(ヶ
r ك كام مورد بر مقدار ضريب نفوذ اتانول در محلول رقيق آب كمتر مؤثر است؟
 محفظه محفظه جمع شود، معادله تغييرات مقدار بخار آب در محفظه كدام خواهد شد؟

$$
\begin{aligned}
& \frac{d}{d t} m_{H_{\Gamma} \mathrm{O}}=n_{\mathrm{H}_{\Gamma} \mathrm{O}} A-\frac{\mathrm{m}_{\mathrm{H}_{\Gamma} \mathrm{O}}}{A}() \\
& \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{~m}_{\mathrm{H}_{\zeta} \mathrm{O}}=\mathrm{n}_{\mathrm{H}_{\zeta} \mathrm{O}} \cdot \mathrm{~A}(\Gamma \\
& \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{~m}_{\mathrm{H}_{\zeta} \mathrm{O}}=\mathrm{n}_{\mathrm{H}_{\zeta} \mathrm{O}} \mathrm{D}_{\mathrm{AB}}-\frac{\mathrm{m}_{\mathrm{H}_{\Gamma} \mathrm{O}}}{\mathrm{~A}}(\Gamma \\
& \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{~m}_{\mathrm{H}_{\Gamma} \mathrm{O}}=\mathrm{n}_{\mathrm{H}_{\Gamma} \mathrm{O}} \cdot \mathrm{D}_{\mathrm{AB}}{ }^{(\uparrow}
\end{aligned}
$$

(

$$
\begin{array}{ll}
0,0) \mathrm{k}_{\mathrm{x}}(Y & 0,0) \mathrm{k}_{\mathrm{y}}() \\
0,0 ヶ \mathrm{k}_{\mathrm{x}}(\uparrow & 0,0 ヶ \mathrm{k}_{\mathrm{y}}(r
\end{array}
$$

 شيميايى تجزيه ماده A بهصورت A \rightarrow بR ثانيه است؟

$$
\begin{array}{ll}
1(r & \frac{1}{r}() \\
r(4 & \frac{r}{r}(r
\end{array}
$$

- نمودار راندمان - غلظت براى واكنش موازى AV

$0, r$ - CSTR (1
$0, r$ _ PFR (r
0,9 - CSTR $(\stackrel{\pi}{ }$
0,9 _ PFR (${ }^{\circ}$

هA حداكثر مىشود؟ ساير اطلاعات：（C） $\begin{array}{lr}\mu(Y & 1 \\ \mu(\varphi & r / \Delta)(\mu\end{array}$

$$
\begin{aligned}
& \quad\left(\mathrm{C}_{\mathbf{A}_{\circ}}=1 \frac{\mathrm{~mol}}{\mathrm{lit}}\right) \text { حداكثر شود؟ R تعيين كنيد كه غلظت ماده } \\
& \frac{1}{r}(r \\
& \frac{\ln (Y)}{r}(\uparrow \\
& \hline
\end{aligned}
$$

－－－معادله سرعت يك واكنش بهصورت زير گزارش شده است．واحد عدد
$-\mathbf{r}_{\mathbf{A}}=\frac{\mu[\mathbf{A}]^{\frac{1}{r}}[\mathbf{B}]^{\frac{\mu}{r}}}{1+0, \mu[\mathbf{A}] /[\mathbf{B}]}$
mol. .s

$$
\frac{\text { lit }}{\text { mol.s }}()
$$

$$
\frac{\operatorname{lit}^{r}}{\operatorname{mol}^{r} \cdot s}(\Gamma
$$

 الزامى است؟

$$
\mathrm{B}, \mathrm{~A}(\Gamma
$$

A (
S, R ، C ، B ، A （ ${ }^{〔}$
C，B،A ${ }^{(}$
r

$-\mathbf{r}_{\mathbf{A}}$	$\mathbf{C}_{\mathbf{A}}$	$\mathbf{C}_{\mathbf{B}}$
1	1	1
Λ	r	r
$r r$	r	r

$$
\begin{aligned}
-r_{A} & =C_{A}^{r} C_{B}^{r} \\
-r_{A} & =C_{A}^{r} C_{B}^{\frac{1}{r}} \\
-r_{A} & =C_{A}^{\frac{1}{r}} C_{B}^{r} \\
-r_{A} & =C_{A} C_{B}
\end{aligned}
$$

مط－مطابق كدام معادله يا تئورى، سرعت واكنش بهصورت

$$
\begin{aligned}
& \text { (Y } \\
& \text { 「 }
\end{aligned}
$$

مسئله، حجم راكتور چند ليتر است؟

$$
\begin{aligned}
& \mathbf{C}_{\mathbf{A}_{\circ}}=1 \frac{\mathrm{~mol}}{\text { lit }} \\
& \mathbf{F A}_{\circ}=10 \frac{\mathrm{~mol}}{\mathrm{~min}} \\
& \mathbf{X}_{\mathbf{A}_{\mathbf{f}}}=0, \mathrm{D}
\end{aligned}
$$

$100(4$
va (r
$\Delta \circ(Y$
ra (1
(90

$$
\begin{aligned}
& \text { (} \left.\mathrm{C}_{\mathrm{A}_{\circ}}=\mathrm{f} \frac{\mathrm{~mol}}{\mathrm{lit}}\right) \\
& r / \mu(r \\
& \text { r/r(1) } \\
& { }_{F}\left({ }_{F}\right. \\
& \mu / \wedge(\Gamma
\end{aligned}
$$

فيزيك رنگَ و مبانى ظاهر /شياء:
צя- جدول دادهشده مربوط به انتقال نور از يك فيلم پليمرى در ضخامتهاى مختلف و طولموج

Path Length/cm	$\log \left(\frac{1}{T}\right)$
-	0,0
$0, r$	0,401
0,4	$0,90 r$
0,9	$0,90 r$
0,1	1,rof
1,0	1,, ○ D

كدام كزينه در مورد اين پليمر، درست است؟
 9V (T روشنايى آن بيشتر مى شوده
¢ (Y) به مكان استاندارد نورى انرزى برابر (EE) نزديكتر مىشود.
() خلوص آن بيشتر مى شود.

٪ ¢

(Y) طول موج بيشينه انعكاس معرف فام اصلى است.

حصول كداميك از روشهاى رنگَ همانندى زمانى ميسر است كه دو نمونه بر روى زير آيند يكسان، با مواد رنگزاى
يكسان و روش رنتى كردن يكسان تهيه شده ريه باشند؟

$$
\begin{array}{ll}
L^{*}=r \circ, a^{*}=+r \mu, b^{*}=-r(r & L^{*}=90, a^{*}=+\mu \Lambda, b^{*}=-r \circ() \\
L^{*}=9 \circ, a^{*}=+\mu \wedge, b^{*}=+r \circ(r & L^{*}=r \circ, a^{*}=+r \mu, b^{*}=+r(r
\end{array}
$$

() بخشى از نور جذب و بخشى انتشار مى يابد.

شكل داده شده باشد، قدرت پوشانندگى اين پوشش كدام است؟

$$
\begin{aligned}
& 0,00 \text { () } \\
& \text { 9,9 (Y } \\
& \text { 1人 (} \\
& \text { † }
\end{aligned}
$$

-VF

(1) اين دو نمونه حتماً جفت متامار بوده و تحت منبع نورى تنگَستن همانند و به رنگَ قهوهاى هستند.
 ٪ ¢ ¢) اين دو نمونه مىتوانند جفت متامار بوده و تحت منبع نورى تنگَستن همانند و به رنتَ زرد باشند.

كدام گزينه ارتباط \quad-Vه

رنگَى برخوردار است؟

$$
\mathbf{L}^{*}=\Delta 0,0
$$

CIE L*a*b*

$$
\mathbf{b}^{*}=0,0
$$

$r \pi()$
$\pi(r$
$\frac{\pi}{r}(r$

لوكاس طيفى در طول موج

	xbar	ybar	zbar
$\boldsymbol{F \& \circ \mathrm { nm }}$	$0, \mu$	0,1	$1, V$

$$
(0,14,0,00)
$$

$$
(0, r, 0,1)(r
$$

$$
(0, V \Delta, 0, r \Delta)
$$

(f برای محاسبه مقادير انرزى منبع نورى در طول موج
-V9 باز تاب معمول يك ماده فلورسنت در طول موج

طول موج 10 نانومتر، درست است؟
() برابر

「
؟ از آ آنجا كه حداكثر بازتاب برابر ا است، مىتوان بازتاب آن را با در طول موج مذكور برابر ا در نظر گرفت. (Y قابل محاسبه نيست. - • - در ارزيابى بصرى اختلاف رنگَ بين دو نمونه توسط يك مشاهدهگَر با بينايى رنگَى طبيعى، كداميـى از عوامل زير كمترين تأثير را دارى؟

مهندسى پليمر -صنايع رنگَ (كد \&A٪)
مواد رنتزاى آلى:
11- محصول واكنش زير كدام است؟

Aץ- محصول واكنش زير كدام است؟

(Y

- AF - ساختارهاى رنگَانههاى بنزايميدازولى زير را در نظر بگیيريد، كدام مورد درخصوص فام رنگًانههاى a و b، درست است؟

> ^^- كدام گَزينه در مورد ضريب خاموشى مولار، درست است؟
> () مستقل از شكل اربيتالها و درجه همیوشانى است.

> ¢ () مقدار ضريب خاموشى مولار فقط به استخلافهاى دهنده و گیرنده بستگى دارد.
> كدام مورد درخصوص پايدارى نمكـهاى دى آزونيوم، درست است؟ - -

نمكهاى دى آزونيوم آليفاتيك پاییدارتر است است.

^^ - در فرايند سنتز زير محصول نهايى (A) كدام است؟

- ^9 - كدام مورט، نوع واكنش تهيـه ماده واسطه زير است؟

$$
\begin{aligned}
& \text { () برگمن } \\
& \text { (} \\
& \text { (} \\
& \text { (Y }
\end{aligned}
$$

$$
\begin{aligned}
& \text { كداميك از مواد رنگَزاى زير داراى فام درخشان است؟ }
\end{aligned}
$$

-qヶ كدام تركيب، در طول موج بالاتر جذب خواهد داشت؟

צ
() از از اكسايش نفتالين

ஈ) از تر كيب انيدريد فتاليكى و نفتالين
¢
اسيد اجِ در دو موقعيت با نمك دى آزونيوم كوپٍ مىشود، بنابراین
() هر دو كوپلينگت با هم همزمان انجام مى گیيرند.

f (f) اسيد آج در شرايطى خاصى غير از موارد گفتهشده كوپل مىشود. كدام گزينه در مورد دى آزوتاسيون آمينهاى آروما آرواتيك، درست است؟
 ץ) آمينهاى داراى استخلافهاى دهنده الكترون، به آسانى بهوسيله عامل دى آزوتهكننده مورد حمله قرار مى گیيرند.
 ¢ (

خوردگَى و پوشششهاى محافظ ـ ـمبانـى پوشششهای آلىى:

با در نظر گرفتن اينكه دو مايع غيرقابل امتزاج با كشش سطحى متفاوت و همـچنين با توجه با جايگِيرى پيگًمنت در فاز مايع دوم، كدام مورد درخصوص كشش سطحى پيگّمنت در تصوير

زير، درست است؟

$$
\begin{aligned}
& \gamma_{1}>\gamma_{r}>\gamma_{\text {pigment }} \\
& \gamma_{1}>\gamma_{\text {pigment }}>\gamma_{r} \\
& \gamma_{1}>\gamma_{r}>\gamma_{\text {pigment }}
\end{aligned}
$$

\& (ارتباطى بين كشش سطحى پيگمنت و مايعات با محل قرارگيرى پيگمنت وجود ندارد.
براى اندازهگيرى زاويه تماس يك قطره مايع روى يك سطح جامد كدام عبارت، درست است؟ -9V
() براى قطرات كوچكى نمىتوان از فشار هيدروستاتيكى و شتاب ثقل حرفى زد بلكه فقط دانسيته ممهم است. ץ †) اختلاف فشار هيدروستاتيكى براى قطرات كوچک بیش از طول موئينگى است. ץ) اختالاف فشار هيدروستاتيكى بين قسمت فوقانى و تحتانى قطره ناحيز است. (Y) براى قطرات كوچگى شتاب ثقل تأثير گذار است.
 نمايش داده شود، كار حاصل از پ $\gamma_{\text {I }}^{\text {پ }}$

$$
\begin{array}{ll}
\mathrm{w}=\gamma_{\mathrm{S}}-\gamma_{1}-\gamma_{\mathrm{I}}(\uparrow & \mathrm{w}=\gamma_{\mathrm{S}}+\gamma_{1}-\gamma_{\mathrm{I}} \\
\mathrm{w}=\gamma_{1}-\gamma_{\mathrm{S}}-\gamma_{\mathrm{I}}(\uparrow & \mathrm{w}=\gamma_{\mathrm{S}}-\gamma_{1}+\gamma_{\mathrm{I}}
\end{array}
$$

99-
「

 -••• رابطه بين عدد جذب روغن (OA) و غلظت حجمى بحرانى پيگّمنت (CPVC) كدام مورد است؟

$$
\mathrm{OA}=\frac{\mathrm{CPVC}}{100+\frac{\rho_{\text {pigment }}}{\rho_{\text {linseed oil }}}}(\Gamma
$$

$$
\mathrm{CPVC}=\frac{1}{1+\frac{\text { OA. } \rho_{\text {pigmen }}}{100 . \rho_{\text {linseed oil }}}}(1
$$

$\rho_{\text {pigment }}$

$$
\mathrm{CPVC}=\frac{\rho_{\text {linseed oil }}}{100+\mathrm{OA}}
$$

$$
\mathrm{CPVC}=\frac{100 \cdot \rho_{\text {linseed oil }}}{1+\text { OA. } . \rho_{\text {pigment }}}(\Gamma
$$

() روشى براى كنترل كيفيت كاغذ است.
ץ) اطلاعاتى در مورد L.a.b بددست مىدهد.
భ) در آن چگَالى رنگَى لايه مركب اندازهگیرى مىشود.
() نفوذ جوهر و ايجاد رگَهاى نايكنواختى در پشت صفحه است.

ץ

017	پيگّمنت
\%	پ
ها	رزين مالئيك
ه	DOP
Q	واكس
\%	اتانول
\%	اتيل استات
	Fًلايكول اتر

「 label ¢

ميكــرون بــر روى

- 1.F محافظت مى كند. \qquad سطح سيلندر قرار مىگيرد و سطح را در بر برابر حملئ
(Y
() (
r
 (Y) رزين استر (Y

$$
\begin{align*}
& \text { ب) نيترو سلولز }
\end{align*}
$$

§ 1 ¢- ثوابت سرعت واكنش در سنتز رزين فنليكـ به كداميكـ از عوامل وابسته است؟ غ غ
() سرعت همزن
(Y) نسبت فنل به فرمالدئيد
pH (${ }^{\text {p }}$

F F

1-9- در پليمريزاسيون زنجيرهای در سامانهٔ امولسيونى آبى، كدام عبارت درست است؟

ץ

(11*

(Y ؟ ¢
اll - كدام رنگَانهٔ ضدخوردگى زير در لايه آسترى، لايهاى غيرفعال (Passive) روى سطح فلز تشكيل مىدهد؟

$$
\begin{aligned}
& \text { 「 } \\
& \text { (Y) اكسيد آهن اصلاحشده }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (}
\end{aligned}
$$

 مشاهده مىشود؟
() خط اريب نمودار به سمت پايين انتقال مىییابد.
(Y) خط اريب نمودار به سمت بالا انتقال مى يابد. س) انتقال خط موازى محور pH به سمت بالا انجام مى

$$
1, \mu 4(4 \quad 1,1 \wedge(\mu \quad-1, \mu(\mu \quad-1, \mu 4()
$$

- llf كدام مورد، درست است؟ () تغييرات انرزى آزاد منفى است و لذا وقوع واكنش در دماى بالاتر از شانس بيشترى برخوردار است.

 ¢ ¢ (- IID

پلى ییور تان رويه داری؟

¢ ¢ (
119- ا19 تشكيل فيلم پوششها، حلال نقش اساسى טارد. كدام ويزگى حلال در اين مورد اهميت بيشترى دارد؟

(Y) (Y) دماى خوداشتعالى حلال (Y)
() نقطه جوش حلال
(
(lr*
 Y (Y) با محمل خود، حد متوسطى از ناساز گارى را دارد.
(¢ ¢ (

