

IF•Y T آزمون (نيملمتمركز) ورود به دور ههاى دكترى ـ سال

دفتر چهُ شماره ((1)

صبح پنجشنبه
\|f.1/Ir/l

وزارت علوم، تحقيقات و فنّاورى سازمان سنجش آموزش كشور

»اگر دانشگًاه اصلاح شود مملكت اصلاح مىشود." امام خمينى (ره)

امام حمينى (ر)

مهندسى معدن - استخراج مواد معدنى (كد وFM)

FD : تعداد سؤال

* داوطلب كرامى، عدم درج مشخصات و امضا در مندر جات جدول زير، بهمنزلئ عدم حضور شما در جلسئ آزمون است.
 شمارءٔ داوطلبى مندرج در بالاى كارت ورود به جلسه، بالای پاسخنا

امضا:

 هزينه توليد هر دستگَاه بهصورت زير است. تابع هدف مسئله براى تعيين تعداد بهينه توليد محصولات كدام است؟

دستگاه	A ظرفيت توليد محصول در هر ساعت	B ظرفيت توليد محصول در هر ساعت	هزينه هر ساعت
برش	10	Fo	ro
ساب	ro	ro	ro

$$
\begin{array}{ll}
\operatorname{Min} Z=r \circ x_{A}+r \circ x_{B}(r & \operatorname{Min} Z=r / \Delta x_{A}+1 / \Delta x_{B}() \\
\operatorname{Min} Z=r \circ x_{A}+r \circ x_{B}(r & \operatorname{Min} Z=10 x_{A}+r \circ x_{B}(r
\end{array}
$$

$$
\begin{aligned}
& \text { () }
\end{aligned}
$$

شرايط مذكور است؟

$$
\begin{array}{ll}
A+r B+r C \leq \wedge 00(r & r A+B+r C \leq \varphi \circ \circ() \\
r A+r B+C \leq \Lambda \circ \circ(\varphi & A+r B+r C \leq \varphi \circ \circ(r
\end{array}
$$

براى حل مسئله برنامهريزى خطى زير به چند متغير كمكى نياز است؟
$\operatorname{Max} Z=\Delta \mathbf{x}_{1}+\varphi \mathbf{x}_{\gamma_{\gamma}}+\varphi \mathbf{x}_{\mathbf{x}_{\gamma}}+\varphi \mathbf{x}_{\boldsymbol{\varphi}}$
() صفر
s.t.

$$
r(r
$$

$$
\begin{aligned}
& x_{1}+r_{x_{r}}+x_{r}+x_{x_{\varphi}}=r_{0} \\
& r_{x_{r}}+x_{r}+x_{\varphi}=10 \\
& x_{r}+x_{f}=\boldsymbol{q} \\
& \mathbf{x}_{1}, \mathbf{x}_{\boldsymbol{r}}, \mathbf{x}_{\boldsymbol{\mu}}, \mathbf{x}_{\boldsymbol{\varphi}} \geq 0
\end{aligned}
$$

- - مقدار بهينه تابع هدف مسئله برنامهريزى خطى زير كدام است؟
$\operatorname{Max} Z=r x_{1}+\varepsilon x_{r}+\lambda x_{r}$
s.t.

$$
\begin{aligned}
& x_{1}+r x_{r}+r x_{r} \leq r o \\
& x_{1}+r x_{r}+r x_{r}=10 \\
& \mathbf{x}_{1}+\mathbf{x}_{r}+x_{r} \geq r \\
& \mathbf{x}_{1}, x_{r}, x_{r} \geq 0
\end{aligned}
$$

$10(1$
ro (r
ro (μ
rres

قستى از جدول اول و نهايى (بهينه) يك مسئله برنامهريزى خطى بهصورت زير داده شده است. مقدار بهينه تابع

		Z	x_{1}	x_{r}	s_{1}	s_{r}	$\mathrm{S}_{\boldsymbol{r}}$	RHS
$\begin{aligned} & \overline{9} \\ & .5 \\ & 4 \\ & \hline \end{aligned}$	Z	1	-r	-r				
$\begin{aligned} & 4 \\ & 7 \\ & 7 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	Z							?
								1
	$\mathrm{x}_{\boldsymbol{r}}$							1
	x_{1}							r
	$\mathrm{S}_{\boldsymbol{r}}$							-

هدف كدام است؟
Δ (1)
9 (
$10(\%$
$11(4$
^- قسمتى از جدول اول و نهايیى (بهينه) يكى مسئله برنامريزى خطى بهصورت زير داده شده است. مقدار A كدام است؟

متنير اساسى	Z	x_{1}	$\mathbf{x}_{\boldsymbol{r}}$	\mathbf{x}_{μ}	S_{1}	S_{r}	R.H.S
Z							-
S	جدول آغازين						10
$\mathrm{S}_{\boldsymbol{r}}$							8
Z	-	r	-	r	0	A	ITr
$\mathbf{x}_{\boldsymbol{r}}$	جدول نهايى						
\mathbf{x}_{1}							

$V()$
$q(Y$
$1 r(r$
$M Y(Y$

تابلوى نهايى زیر چه حالت خاصى را نشان مىدهد؟ （）ناحيه موجه نامحدود، جواب بهينه محدود Y（Y）ناحيه موجه نامحدود، جواب بهينه نامحدود ٪）ناحيه موجه محدود، جواب بهينه محدود ¢（
－ا－در مدل حملونقل زير بعضى از جوابهاى بهينه درج شده است و مىیانيم مقدار بهينه تــابع هــدف Y\＆o اســت．

مقدار ؟ كدام است؟
9 （1）
V（r
$\wedge(\stackrel{r}{ }$
$9(4$

در مدل حملونقل زیر اگَ جواب دادهشده بهينه باشد، چه شرایطى براى پارامترهاى a و b برقرار خواهد بود؟

	نيروگاه	ن	نيروگاه	عرضه
معدن	a	V	9	10．
		Δ 。	100	
م م	9	b	0	rao
	100		10．	
تقاضا	100	DO	「边	Foo

$$
\begin{aligned}
a=1 r b & =r \\
a=9 b & =1 \\
a=9 & =9 \\
a & =1 r b
\end{aligned}
$$

 حتماً به ماشين ا و اپراتور 「 هرگز به ماشين 「 تخصيص نيابد．هزينه نهايى تخصيص كدام است؟

	ماشين	ماشين	ماشين	F F	ماشين
إراتور	Ir	r	1	f	r
إپاتور	0	1	r	V	1
إپاتور	r	F	r	r	1
F إپاتور	Γ	p	1	Γ	r
إپ	Δ	r	f	r	r

1人（1
ro（r
ry（r
Mf（y

זا- در مدل تخصيص زير كداميك از حالتهاى عنوانشده در حالت بهينه امكانپذير نيست؟

	معدن	م	معدن
'	19	19	Ir
ماشين	ro	19	10
ماشين	11	11	11

() ماشين ا (به معدن
r
「

(1f كدام عبارت در مورد روش صفحات برش براى يكى مسئله برنامر يزى خطى با اعداد صحيح، نادرست است؟

 ؟

$\operatorname{Min} Z=r x_{1}+r x_{r}$
s.t. $\quad x_{1}+\Gamma \mathbf{x}_{Y} \geq \Delta$

$$
\psi_{x_{1}}+x_{r} \geq q
$$

$$
\mathbf{x}_{1}, \mathbf{x}_{\mathrm{r}} \geq 0
$$

$$
\begin{aligned}
& x_{1}=r, x_{r}=1, Z=r() \\
& x_{1}=r, x_{r}=0, Z=9(r \\
& x_{1}=r, x_{r}=0, Z=r(r \\
& x_{1}=r, x_{r}=1, Z=9(r
\end{aligned}
$$

| $-r$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $-r$ | $-r$ | $-r$ | \wedge | $-r$ | $-r$ | r | $-r$ |
| $-r$ | $-r$ | 1Δ | $-r$ | Δ | 1Δ | $-r$ | $-r$ |

$$
\begin{gathered}
+r g 9(1) \\
+1 \mathrm{~g} 9(r \\
+9 \mathrm{~g} 19(r \\
+11 \mathrm{glv}(\mathrm{r}
\end{gathered}
$$

-IV شيب 1 : ا طراحى شود، چند محدوده

| $-r$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $-r$ | $-r$ | $-r$ | \wedge | $-r$ | $-r$ | r | $-r$ |
| $-r$ | $-r$ | 1Δ | $-r$ | Δ | 1Δ | $-r$ | $-r$ |

(Y
「

 متر است.)
$\gamma(h)=\mathcal{F}+0, \Delta h$
$h \leq f \circ$
$\gamma(\mathbf{h})=Y \mathcal{F}$
$h \geq f_{0}$

$$
\begin{aligned}
\text { s, } & (1 \\
V / \Delta & (Y \\
\Lambda & (\Gamma \\
1 / \Delta & (\varphi
\end{aligned}
$$

عيار نمونهها در يكى مدل بلوكى برحسب گرم بر تن در شكل الــف نشــان داده شــده اســت. درصــور تـىــــهـ از روش
نزديكترين نقاط براى تخمين عيار بلوكها استفاده شود با توجه به اطلاعات زیر سود واقعى چند واحـد

r	10	\wedge
\bullet	\bullet	\bullet
r	r	γ
$\bullet \bullet$	\bullet	\bullet

 هز ينه برداشت هر بلوك باطله

$$
900(1
$$

$$
9 \circ \circ \text { (Y }
$$

1roo (r
$1900(\%$

| $-r$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $-r$ | $-r$ | $-r$ | $-r$ | q | $-r$ | $-r$ |
| $-r$ | $-r$ | $1 r$ | $-r$ | r | $-r$ | $-r$ |

سود هر واحد عيار بالاتر از عيار حد سربهسرى oo 10

$\frac{1}{\mu}$
$\frac{1}{\mu}{ }^{\text {L }}$
Y

人 ()
1r (Y
10 (
iver

> برابر مى شود؟
> $\frac{1}{r}(1$
> $r(Y$

「

9 m		
	\％${ }^{\text {d }}$	¢，\％（1）
$19 m$	\％V	9／4（r
fm	\％${ }^{\text {f }}$	\checkmark（r
1Vm	\％人	\wedge（ ${ }^{\text {c }}$
9 m	\％r	

> واريانس خطاى تخمين عيار بلوكها، در مدل بلوكى به كدام عامل بستگى ندارد؟ (Y عيار نمونهها
> 1) اندازء بلوكى
－ra

٪ヶ－
 نهايیى دوبرابر شود، عيار حد آستانه اقتصادى چند پـد برابر قبلى خواهد شد شد؟

$$
\begin{aligned}
& \frac{r}{r}() \\
& \frac{1}{r}<r \\
& \frac{r}{q}<r \\
& \frac{1}{r}<r
\end{aligned}
$$

1 g V g（
Δ ， 9 g $10(\mathrm{~F}$

$$
\begin{array}{r}
9(1 \\
9,9 \Delta(r \\
V(r \\
V / \Delta \Delta(Y
\end{array}
$$

با توجه به شكل زير، درصور تى كه عيار مادهٔ معدنى در نقطه P با استفاده از عيار مادهٔ معدنى در نقاط A، و C با با سه روش عكس فاصله، عكس مجذور فاصله و نزديكترين نقاط تخمين زده شود، كداميك از گزينــهههـاى زيـــر در

($\lambda_{\text {B }}$
的 ض $\lambda_{\text {Br }}$

$$
\begin{aligned}
& \lambda_{\mathrm{B}!}=\lambda_{\mathrm{Br}}=\lambda_{\mathrm{Br}} \quad \\
& \lambda_{\mathrm{B})}>\lambda_{\mathrm{Br}}>\lambda_{\mathrm{Br}}(r \\
& \lambda_{\mathrm{Br}}>\lambda_{\mathrm{B}!}>\lambda_{\mathrm{Br}}(r \\
& \lambda_{\mathrm{Br}}>\lambda_{\mathrm{Br}}>\lambda_{\mathrm{B}!} \quad{ }^{\mathrm{r}}
\end{aligned}
$$

عكس مجذور فاصله كدام است؟

$$
\begin{gathered}
g_{X}=\frac{r}{V} g_{A}+\frac{1}{V} g_{B}+\frac{r}{V} g_{C}(1 \\
g_{X}=\frac{r}{V} g_{A}+\frac{r}{V} g_{B}+\frac{1}{V} g_{C}(r \\
g_{X}=\frac{10}{1 V} g_{A}+\frac{r}{1 V} g_{B}+\frac{r}{1 V} g_{C}(r \\
g_{X}=\frac{10}{1 V} g_{A}+\frac{\Delta}{1 V} g_{B}+\frac{r}{1 V} g_{C}(r
\end{gathered}
$$

لابسـچر، روش استخراج مناسب كدام است؟

ץr- در بحث جريان ثقلى مواد و ايجاد بيضوىهاى سستشدگى و تخليه، خروج از مركز اين بيضوىها بــا كــداميكـ از
عوامل زير رابطه مستقيم دارد؟

 ץ

ץץ-
(1) آ ارتفاع

(1) مواد داننريز

٪) مواد گرد با سطح صاف

خواهد داشت؟
\& צـ

 - ~V
 مربوط به چه نوع سنگَهايـى است و مقدار آن كدام است؟
 تبديل مىشود. درصد بازيابى واحد تغليظ ه^^٪ است. براى توليد يک تن كنسانتره چند تن ماده معدنى بايد استخراج شود؟ ra (1 $\Delta \circ(r$ $90(\mu$ vo (Y^{4}

$$
\begin{aligned}
& \text { ¢ ¢ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { MRMR عد پا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Y (Y (} \\
& \text { (Y) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { † } \\
& \text { ¢ }
\end{aligned}
$$

در يك معدن طلا باظرفيت فراورى F.
○ برصد به شرح جدول زير انجام شده است. محاسبات در كداميكى از رديفها غير منطقى است؟

\% \% \%	ترقيق 10 \%	
¢ ○○, 000	F००, 000	تناز فراورى شده در سال
0,r¢q	$\bigcirc, \mu \circ p$	عيار متوسط پِ
90	94	درصد بازيابى كار دانى
rr,o००,000	¢¢,०००,०००	در آمد سالانه

در طراحى پايه در لايههاى شيبدار نسبت به لايههاى افقى كدام عبارت درست است؟

ץ) در طراحى پايهها در لايههاى افقى، تنشهایى افقى مورد توجه قرار مى گییرد ولى در طراحى پایه در لايههاى شيبدار علاوهبر تنشهایى افقى، تنشههاى قائم هم در نظر گرفته مى دیود.
ץ) در طراحى پايهها در لايههاى شيبدار، تنشهاى قائم مورد توجه قرار مى گیرد ولى در طراحى پايه در لايههاى

- لايهاى كم شيب به ضـخامت جبهههكار طولانى با طول جبهههكار اثر نشست از رابطه $\mathbf{S}_{\text {max }}$) $\in=0 / \wedge \frac{S_{\text {max }}}{h}$ حداكثر نشست ممكن و h عمق لايه) محاسبه مى شود. اگَر ضـريب
 خواهد داد؟ Tr/D (1
ra/r (r rr (r YO (Y
كد - FY

لايهاى به روش اتاق و پايه با پایههاى مستطيلشكل استخراج مى شود. طول و عرض پايهها بهتر تيب 19 او 9 متــر و طول و عرض اتاقها بهترتيب 1 و 9 متر است. حداكثر نسبت استخراج مورد انتظــار در ايــن معـــدن چنـــد درصــد خواهد بود؟
ra ()
Yo (Y
$9 \circ(\mu$
Va (${ }^{\text {r }}$
(FD

(1) پُر كننده سيمانى خميرى يا دوغابى
()

