

IF.Y F آزمون (نيمهمتمركز) ورود به دور ههاى دكترى ـ سال

دفتر جهٔ شمارة́ (1)
صبح
صبح
|F.1/IF/II
|F.1/IF/II
جمهورى اسلامى ايران
وزارت علوم، تحقيقات و فنّاورى
سازمان سنجش آموزش كشور
شيمى كاربردى (كد FYID)

عنوان مواد امتحانى، تعداد و شمارهٔ سؤالات

صفحه

* داوطلب گَرامى، عدم درج مشخصات و امضا در مندر جات جدول زير، بهمنزلئ عدم حضور شما در جلسهٔ آزمون است.

با آكاهى كامل، يكسانبودن شماره صندلى خود با با شمارهٔ داوطلبى اينجانب
شمارهٔ داوطلبى مندرج در بالاى كارت ورود به جلسه، بالاى پاسخنامه و دفتر چهٔ سؤالات، نوع و كد كنترل درج شد شده بر روى جلد دفترچهٔ سؤالات و پايين پاسخنا

امضا:
 شـيمى تتجزيه پپيشرفتـه):
 $\frac{C_{A}}{C_{A \circ}}=\frac{1}{1+k C_{A \circ} t}$

$$
\begin{aligned}
& \text { براى محاسبـه k به روش ترسيمى چحه بايد كرد؟ }
\end{aligned}
$$

$$
\begin{aligned}
& \text {, , } \mathrm{C}_{\mathrm{A}}^{\text {(}} \\
& \text {, } \frac{1}{\mathrm{C}_{\mathrm{A}}}
\end{aligned}
$$

「-
Packed bed (φ Flow Reactor (r CSTR (r) Batch ()
r-rA + rB \rightarrow rT

$$
\begin{array}{ll}
\frac{\left(-r_{A}\right)}{r}=\frac{\left(r_{\mathrm{B}}\right)}{r}=\frac{\left(-r_{\mathrm{T}}\right)}{r}(r & r\left(-r_{\mathrm{A}}\right)=r\left(-r_{\mathrm{B}}\right)=r\left(r_{\mathrm{T}}\right) \\
\frac{\left(-r_{\mathrm{A}}\right)}{r}=\frac{\left(-r_{\mathrm{B}}\right)}{r}=\frac{\left(r_{\mathrm{T}}\right)}{r}(r & \frac{\left(r_{\mathrm{A}}\right)}{r}=\frac{\left(r_{\mathrm{B}}\right)}{r}=\frac{\left(r_{\mathrm{T}}\right)}{r}
\end{array}
$$

$$
\begin{aligned}
\mathrm{k}_{r}=\mathrm{k}_{1} \mathrm{e}^{-\frac{\mathrm{E}}{r \mathrm{RT} T_{1}}}(r & \mathrm{k}_{r}=\mathrm{k}_{1} \mathrm{e}^{\frac{\mathrm{E}}{r \mathrm{RT}_{1}}}() \\
\mathrm{k}_{r}=r \mathrm{k}_{1}(r & \mathrm{k}_{r}=\frac{1}{r} \mathrm{k}_{1}(r
\end{aligned}
$$

ميزان تبديل، اين واكنشگًاهها در حالتهايى كه درجه واكنش

(T (¢ ¢ () (
§-

$$
\begin{array}{rlr}
-\mathrm{r}_{\mathrm{A}}=\mathrm{kc}_{\mathrm{A}}(\mathrm{r} & -\mathrm{r}_{\mathrm{A}}=\mathrm{k}() \\
-\mathrm{r}_{\mathrm{A}} & =\frac{\mathrm{k}}{\mathrm{c}_{\mathrm{A}} \mathrm{c}_{\mathrm{B}}}(\mathrm{Y} & -\mathrm{r}_{\mathrm{A}}=\mathrm{kc}_{\mathrm{A}}^{r}
\end{array}
$$

$$
\begin{aligned}
& \text { مى CAo }=1 \frac{\text { mol }}{\text { liter }} \\
& \text { VF (Y } \\
& \text { Nr (1 } \\
& \text { HM(Y G1 (r }
\end{aligned}
$$

 تجزيه مىشود. هر گاه از يكـ واكنشگاه همخورده مداوم استفاده شود و تركيبشونده A خالص با غلظت ورودى ○ا وارد و با 9 ٪ تبديل خارج شود، غلظت R خروجى چقدر خواهد بود؟ (هماهنگَى واحدها محفوظ است.)

$$
\begin{array}{cc}
1 r(r & 10() \\
9(Y & 9(r
\end{array}
$$

- -

$$
\begin{aligned}
& 0,1 \vee \frac{\text { mol }}{\text { liter }} \text { (} \zeta \\
& \text { r, ra } \frac{\text { mol }}{\text { liter }} \\
& \text { o, rr } \frac{\text { mol }}{\text { liter }} \\
& \text { \% }
\end{aligned}
$$

 تبديل Va درصد است. دبى خوراک

$$
\begin{array}{rr}
\Delta(r & r, \mu \mu() \\
\operatorname{la}(Y & V / \Delta(r
\end{array}
$$

$$
\begin{array}{lc}
\frac{\mathrm{KC}_{0}{ }^{r}}{r^{r}}(r & \mathrm{KC}_{0}{ }^{r}() \\
\frac{\mathrm{KC}_{0}{ }^{r}}{\mathrm{C}_{\mathrm{R}}{ }^{r}}\left({ }^{r}\right. & \frac{\mathrm{KC}_{0}{ }^{r}}{\mu}(r
\end{array}
$$

 بكَير يد. غلظت تعادلى A در اين واكنش چقدر است؟

$r(r$	1()
$r(Y$	$r(r$

rim مقدار درصد تبديل زمانىكه ${ }^{\text {C }}$ A $=\Delta \circ \frac{\text { mol }}{\text { liter }}$ میباشد، كدام است؟

$$
\begin{array}{ll}
\frac{r}{r}(r & \frac{\Delta}{q}() \\
\frac{1}{r}(\varphi & \frac{r}{a}(r
\end{array}
$$

 است. ميزان تبديل A در راكتور كدام است؟
$\% ~ Y \circ$ (
$\% \omega \circ$ (
$\% .90(\Gamma$
$\%$ V。 (\uparrow
 راكتور را نصف كنيم، درصد تبديل برابر خواهد بود با:

$$
\begin{aligned}
& \% \mu \mu(r \\
& \% \mu \Delta{ }_{\mu}
\end{aligned}
$$

$$
\%\lceil\Delta \quad(
$$

$$
\% \varphi \circ(\Gamma
$$

تركيبى در فار مايع با ثابت سرعت -18 درنظر گرفته شود، كمترين مقدار راكتور همخخورده كه بايستى چشا

$r(r$	1()
$r(r$	$r(r$

(ساعت باشد، زمان نيمهعمر براى غلظت اوليه rmol

$$
\begin{array}{r}
r(1 \\
1(r \\
0,0
\end{array}(r)
$$

 واكنش شركت مى كند. واكنش برگَشتخپير با معادله سرعت زير انجام مىشود:
$\left.-\mathbf{r}_{\mathbf{A}}=0, \circ \mathrm{r}_{\mathbf{C}} \mathbf{A}-0,0\right) \mathbf{C}_{\mathbf{R}}, \mathbf{A} \rightleftharpoons \mathbf{R}$
ميزان تبديل تعادلى براى اين واكنش كدام است؟

$\%$ \% ${ }^{\text {r }}$	\% ¢ (
$\%$ vo (f)	$\%$ \% (r

 تبديل واكنش ايجاد مى كند؟

$$
\begin{aligned}
& \text { ؟ 「 } \\
& \text { ¢ }
\end{aligned}
$$

با بهره بالا PI (\uparrow

كدام نمودار زير، پاسخ پلهاى دو سيستم تداخلى درجه اول مىباشد؟

K q.

$$
\begin{array}{r}
\frac{H_{r}}{Q_{0}}=\frac{R_{r}}{\left(A R_{1} S+1\right)\left(A R_{r} S+1\right)}(1 \\
\frac{H_{r}}{Q_{\circ}}=\frac{\left(R_{1}+R_{r}\right)}{\left(A R_{r} S+1\right)\left(A R_{r} S+1\right)}(r \\
\frac{H_{r}}{Q_{\circ}}=\frac{R_{r}}{\left(A R_{r} S+1\right)\left[\left(A R_{1}+A R_{r}\right) S+1\right]}(r \\
\frac{H_{r}}{Q_{\circ}}=\frac{R_{r}}{\left(A R_{r} S+1\right)\left(A R_{r} S+A R_{1}+1\right)}(\varphi
\end{array}
$$

$$
F(r
$$

$$
9(4
$$

$r(1$
$\Delta(r$
كدام گزينه پاسخ پله واحد يك سيسته، با تابع تبديل -ra

 (10॰psi
$(\omega)=0, \mu \frac{1}{\min } \cdot k=0, r(1$
$(\omega)=r, \Delta \frac{1}{\min } \cdot k=0, r(r$
$(\omega)=0, \mu \frac{1}{\min } \cdot k=0,1(\mu$
$(\omega)=r / \omega \frac{1}{\min } \cdot k=0, /\left(\varphi^{c}\right.$
(PI) براى سيستم فيدبك كدام است؟ - تابع انتقال كنتر لكننده تناسبى ـانتگرالى

$$
\begin{aligned}
\mathrm{K}_{\mathrm{C}} \cdot \tau_{\mathrm{I}} \cdot \mathrm{~S}(r & \mathrm{K}_{\mathrm{C}}(1 \\
\mathrm{K}_{\mathrm{C}}\left(1+\frac{1}{\tau_{\mathrm{I}} \cdot \mathrm{~S}}\right)(\uparrow & \frac{\mathrm{K}_{\mathrm{C}}}{\tau_{\mathrm{I}} \cdot \mathrm{~S}}(\uparrow
\end{aligned}
$$

كميت	نماد	ابعاد	$\mathrm{Q}=\mathrm{C} \cdot \frac{\mu \mathrm{D}^{\mu}}{\Delta \mathrm{P}}$
دبى	Q	$\mathbf{L}^{\mu} \mathbf{T}^{-1}$	ℓ
افت فشار در واحد طول	$\frac{\Delta \mathbf{P}}{\ell}$	$\left(\mathrm{ML}^{-r} \mathbf{T}^{-r}\right)$	$\mathrm{Q}=\mathrm{C} \cdot \frac{\mathrm{D}^{\mu}}{\Delta \mathrm{P}}(r$
قطر	D	L	$\mu \cdot \frac{\text { dr }}{\ell}$
لزجت ديناميك	μ	$\mathbf{M L}{ }^{-1} \mathbf{T}^{-1}$	$\mathrm{Q}=\mathrm{C} \cdot \frac{\Delta \mathrm{P}}{\ell} \cdot \frac{\mathrm{D}^{\varphi}}{\mu}(\varphi$
			$\mathrm{Q}=\mathrm{C} \cdot \frac{\Delta \mathrm{P}}{\ell} \cdot \frac{\mu}{\mathrm{D}^{\mu}}\left({ }^{\varphi}\right.$

 (Y) () (٪

 () روش FCC: r) روش FCC: ז

 درستى از پارامترهاى هماثر ارائه نمىكند؟

$$
\begin{aligned}
\mathrm{CD} & =\mathrm{ABC} \\
\mathrm{BDE} & =\mathrm{ACD}
\end{aligned}
$$

$$
\mathrm{AD}=\mathrm{CDE}
$$

$$
\mathrm{DE}=\mathrm{ABE}(\Gamma
$$

r- نتـيج تعيين يكى كميت فيزيكى از دو روش حاصل شده است. در مورد اختلاف سيستماتيكى بين آن دو روش كدام گزينه صحيح است؟

, r^ fo fi r^ fo fr fl $\left[\bar{X}_{Y}=F_{0}, S_{\bar{x}_{Y}}=1, \Delta r\right]$

$S_{\bar{x}_{1}-\bar{x}_{Y}}=0, v v$

$$
\begin{aligned}
& \text { () روش دوم اعداد بزر گترى نسبت به روش اول ارائه مى كند. }
\end{aligned}
$$

 دو خط توليد به شرح زير است:
A: $19,11,1 \mathrm{~V}, 11$
$B: \vee \circ, \Delta \Delta, \wedge \circ, \wedge \Delta$
با توجه به نتايج نمونهبردارى، اين شركت كداميكـ از اين دو نيرو را بايد استخدام كند؟

$$
\begin{array}{rr}
\mathrm{B}(\mathrm{r} & \mathrm{A}(1 \\
\text { هيكدام } \mathrm{F} & \mathrm{~A}, \mathrm{~B}(\mathrm{r}
\end{array}
$$

\mathbf{A}	\mathbf{B}	$\mathbf{R 1}$	$\mathbf{R 2}$
-	-	$\mu \circ$	$\mu \circ$
+	-	$9 \circ$	$9 \circ$
-	+	$\Delta \circ$	$\Delta \circ$
+	+	μ_{\circ}	$\Lambda \circ$

. (r (r) بر AB بر روى R2 مؤثر است و روى R1 تأثيرى ندارد. (AB (${ }^{〔}$

$\mathbf{A}(\mathbf{T})$	$\mathbf{B}(\mathbf{P})$	Conversion
-	-	ro
+	-	$\Delta \circ$
-	+	μ_{\circ}
+	+	μ_{\circ}

$$
\begin{array}{r}
C=r \Delta+\Delta A+\Delta B+1 \circ A B \\
C=v \circ+1 \circ B-r \circ A B \\
C=r \Delta+\Delta A-1 \circ A B \\
C=v \circ+r
\end{array}
$$

 ششمين آناليز برابر با זا باشد، كدام

 r Y) ميانگَين بزر گَتر از

$\begin{array}{ll}\mathbf{M}(\mathbf{O H})_{r(s)} \rightleftharpoons \mathbf{M}^{r+}+\mathbf{O H}^{-} & \mathbf{K}_{\text {sp }}=\Delta, 0 \times 10^{-\gamma_{0}} \\ \mathbf{M}(\mathbf{O H})_{r(s)}+\mathbf{O H}^{-} \rightleftharpoons \mathbf{M}(\mathbf{O H})_{r}^{r-} & \mathbf{K}=\Delta, 0 \times 10^{\wedge}\end{array}$

$$
\begin{array}{ll}
10, \circ(Y & 1 r, \circ(1 \\
V, \circ(4 & 1, \circ(r
\end{array}
$$

 () توزيع خطاهاى تصادفى (Y) تغييرات ضريب جذب برحسب طول مور pH ¢ (f) تغييرات ظرفيت بافرى به صورت تابعى از نسبت اسيد به باز

 خطى چند

$$
\begin{aligned}
& \text { حساسترين آشكارسازها در ناحيه فروسرخ نزديك (N - IR) كداماند؟ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (Y) بولومترها }
\end{aligned}
$$

 (-

$$
\begin{aligned}
& \text { (Y) عناصر با لبه جذب مناسب } \\
& \text { (Y) ك }
\end{aligned}
$$

$$
\begin{aligned}
& \text { r) تر تركيبات غيرفلزى آمورف بان }
\end{aligned}
$$

$$
\begin{aligned}
& \text { () توليد يون مولكول (M+) به ميزان بالا براى تر كيبات با جرم مولكالكولى بالا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ؟ } \\
& \text { ¢ ¢) قطعه قطعه شدن تر كيب به ميزان بالا }
\end{aligned}
$$

- Fه- نمودار مربوط به ضريب شكست (ף) برحسب طول موج (nm) براى كوارتز به صورت زير است. با توجه بـه آن

1) در طول موجهاى ○
Y) در طول موجهاى (Y)

ケ) در طول موجهاى ¢ \uparrow) در طول موجهاى
شيمى كاربردى (كد

