

904A

دفترچه شماره 3 از 3

تا شمارہ

۳.

40

از شماره

١

31

حق چاپ، تکثیر و انتشار سؤالات به هر روش (الکترونیکی و...) پس از برگزاری آزمون، برای تمامی اشخاص حقیقی و حقوقی تنها با مجوز این سازمان مجاز می باشد و با متخلفین برابر مقررات رفتار می شود.

904A

صفحه ۲

* داوطلب گرامی، عدم درج مشخصات و امضا در مندرجات کادر زیر، بهمنزله عدم حضور شما در جلسه آزمون است.

اینجانب یکسانبودن شماره داوطلبی با آگاهی کامل، یکسانبودن شماره صندلی خود با شماره داوطلبی مندرج در بالای کارت ورود به جلسه، بالای پاسخنامه و دفترچه سؤالات، نوع و کدکنترل درجشده بر روی جلد دفترچه سؤالات و پایین پاسخنامهام را تأیید مینمایم.

امضا:

تحقیق در عملیات (۱ و ۲) ــ تئوری احتمالات و آمار مهندسی:

 ۱- فرض کنید در یکی از تکرارهای الگوریتم سیمپلکس برای مسئله برنامهریزی خطی زیر، x₁ و x₁ بهترتیب متغیرهای پایهای بوده و -۱ - ۲] = B⁻¹ = [⁰ . اگر مقدار تابع هدف در این تکرار برابر ۲ باشد، آنگاه α و θ بهترتیب کداماند؟

 $x_1 + \alpha x_r \leq \theta$

 $x_1, x_7 \ge 0$

- ۱) صفر و ۴ ۳) صفر و ۸ ۳) صفر و ۸
- $\mathbf{x}^{\circ} = \mathbf{x}^{\circ} = \mathbf{x}^$
 - $(s_{1}' \circ x_{7}') = (x_{1}' \circ s_{7}' \circ s_{7}' \circ s_{7}' \circ s_{7}') = (x_{1}' \circ s_{7}' \circ s_{7}' \circ s_{7}' \circ s_{7}') (\%$ $(s_{7}' \circ s_{1}') = (x_{1}' \circ x_{7}' \circ s_{1}' \circ s_{7}' \circ s_{7}' \circ s_{7}') (\%$
- ۳- یک جعبه با ظرفیت ۴۱ کیلوگرم مفروض است. میخواهیم از ۵ کالای متفاوت، در این جعبه قرار دهیم. جرم
 ۳- یک جعبه با ظرفیت ۴۱ کیلوگرم مفروض است. میخواهیم از ۵ کالای متفاوت، در این جعبه قرار دهیم. جرم
 ۹۰ هرکدام از این کالاها به تر تیب ۶، ۲، ۲ و ۱ کیلوگرم و قیمت هرکدام آنها به تر تیب ۱۵، ۶، ۸، ۶ و ۳ واحد پرولی
 باشد. اگر از هرکدام از این کالاها حداکثر ۱۰ عدد وجود داشته و امکان قرار دادن بخشی از یک کرالا هر و جرود
 داشته باشد. اگر از هرکدام از این کالاها حداکثر ۱۰ عدد وجود داشته و امکان قرار دادن بخشی از یک کرالا هر وجرود
 داشته باشد، آنگاه بیشترین ارزش قیمتی امکان پذیر این جعبه، چند واحد پولی است؟
 - ۱۳۳ (۱
 - 147 (1
 - 158 (8
 - 187 (4

َ- جدول یکی از تکرارهای الگوریتم سیمپلکس برای یک مسئله برنامهریزی خطی مینیممسازی، بهصورت زیر مفروض است. کدام مورد، بیانگر یک جهت دورشونده رأسی برای این مسئله است؟											
	Z	x,	X۲	X٣	Xç	x۵	Xç	RHS	$d^{T} = (\circ, -\tau, -\iota, \circ, -\tau, \iota)$ (1)		
x۵								۴	$\mathbf{d}^{\mathrm{T}} = (\circ, \mathrm{r}, \mathrm{l}, \circ, \mathrm{r}, -\mathrm{l})$ (r		
×۲	o		١	o	۲	o	-۲	١	$\mathbf{d}^{\mathrm{T}} = (\circ, -\tau, -\iota, \circ, -\tau, -\iota) (\tau$		
×۳	o		o	١	۲	o	-1	۲	$\mathbf{d}^{\mathrm{T}} = (\circ, r, l, \circ, r, l) (r)$		
Z	١	- \	o	o	۴	o	۲	٧			

۵ مسئله برنامه ریزی خطی و جدول روش M بزرگ زیر، مفروض هستند. مقدار A-B+C کدام است؟

$\mathbf{Min} \mathbf{z} = \mathbf{Y}\mathbf{x}_{1} + \mathbf{x}_{\mathbf{Y}}$		z	x۱	x۲	sı	s۲	R	R۲	RHS	
s.t. $x_1 + \Upsilon x_7 \ge \Lambda$ $\Upsilon x_1 + \Upsilon x_7 \ge \Upsilon \Upsilon$	x۲	o	<u>۴</u> ۳	۱	o	$-\frac{1}{r}$			٨	
$x_1, x_{\gamma} \ge 0$	s ₁	o	<u> </u>	o	۱	- ۲ ٣			٨	
	Z	١	Α	o	o	$-\frac{1}{r}$		В	C	
	v - M	1 (7							Y + 2	M ()
יז זי	$\frac{r}{r} - M$	1 (۴							$\frac{\gamma\gamma}{\gamma} + 1$	М (т

کدام است؟	سئله زير، '	جواب بهينه م	-9
-----------	-------------	--------------	----

 $\frac{\gamma q}{\Delta}$ (1

- $\frac{1}{\Delta}$ (*
- ٧- مسئله اولیه ماکزیممسازی (P) و دوگان (ثانویه) آن (D) مفروض هستند. کدام مورد درست است؟
 ١) مقدار تابع هدف مسئله اولیه، فقط در نقطه بهینه آن، از مقدار تابع هدف مسئله دوگان در نقطه بهینه آن،
 کوچکتر یا مساوی است.
- ۲) مقدار تابع هدف مسئله اولیه در هر نقطه شدنی(امکانپذیر) آن، همواره از مقدار تابع هدف مسئله دوگان در هر نقطه شدنی آن، بزرگتر یا مساوی است.
- ۳) مقدار تابع هدف مسئله اولیه، فقط در نقطه بهینه آن، از مقدار تابع هدف مسئله دوگان در نقطه بهینه آن، بزرگتر یا مساوی است.
- ۴) مقدار تابع هدف مسئله اولیه در هر نقطه شدنی آن، همواره از مقدار تابع هدف مسئله دوگان در هر نقطه شدنی آن، کوچکتر یا مساوی است.

904A

- ۸- یک مدل برنامه ریزی خطی، به روش سیمپلکس حل شده و در جدول نهایی مشخص شده که دارای جواب بهینه چندگانه (دگرین) است. حال درصورتی که یک محدودیت جدید به مدل اضافه شود، کدام مورد صحیح است؟
 ۱) ممکن است جواب بهینهٔ جدول نهایی در محدودیت جدید صدق کند، اما برخی جوابهای بهینه چندگانه دیگر مدل، در محدودیت جدید صدق نمی کند.
- ۲) اگر جواب بهینهٔ جدول نهایی در محدودیت جدید صدق نکند، آنگاه هیچکدام از جوابهای بهینه چندگانه مدل، در محدودیت جدید صدق نمیکند.
- ۳) اگر جواب بهینهٔ جدول نهایی در محدودیت جدید صدق کند، آنگاه محدودیت جدید حتماً قسمتی از ناحیه شدنی مدل را برش میزند.
 - ۴) اگر جواب بهینهٔ جدول نهایی در محدودیت جدید صدق کند، آنگاه محدودیت جدید حتماً زائد است.
 - -۹ جدول حملونقل حل شده به روش كمترين هزينه زير، مفروض است. حدود تغييرات α كدام مى تواند باشد؟
 - $\alpha \ge$ 9 ()
 - $\alpha \geq$ 10 (T
 - $\alpha > 9$ (T
 - $\alpha > 1 \circ$ (*

j	j,		٣	۴	عرضه
١	۸ ۴۵	18	10 V0	٩	118
۲	٩	۱۲ ۳۰	α ΔΔ	v	٨۵
٣	14	٩	۶ ١٥	۵ ۳۰	40
تقاضا	۴۵	۳۰	١٣۵	۳۰	740

- ۱۰ در جدول حملونقل زیر، اگر عرضهٔ ۱ و تقاضای ۲، هر دو همزمان بهاندازه α(۴>α>٥) افزایش داشته باشند، آنگاه هزینه بهینه به چه اندازه تغییر میکند؟ (روش شمال غربی)
 - ۱) به اندازه α ۲۲۰ کاهش مییابد.
 - ۲) به اندازه α ۴۲۰ افزایش می یابد.
 - ۳) به اندازه α ۴۲۰ کاهش مییابد.
 - ۴) به اندازه α ۲۲ افزایش مییابد.

j i	١	٢	عرضه
١	100	800	١٥
٢	9 4 0	170	۲۰
تقاضا	14	18	٣٥

	_
شبکه جریان زیر، با شرط اینکه جریان کل عبوری از گره (۶)، عددی زوج باشد، مقدار کمترین جریان کل از	۱ ۱– در
دأ (۱) تا مقصد (۱۰) كدام است؟	مب
	()
	(۲
V F T	(٣
* (*) · · · · · · · · · · · · · · · · · ·	(۴
ِ یک محدودیت برش در مدل برنامهریزی عدد صحیح زیر، بهصورت $rac{\Delta}{7} \leq S_1 + rac{1}{7}S_1 + rac{1}{7}S_1$ باشد، این محدودیت به	۱۲– اگ
ام صورت در مسئله اصلی ظاهر میشود؟	کد
$Min z = \Delta x_1 + \forall x_1$	
s.t. $fx_1 + Tx_7 \leq T$	
$\beta x_1 + 1 \Upsilon x_{\Upsilon} \leq \beta$	
$x_1, x_7 \geq 0$ and $x_7 \geq 0$	
$\forall x_1 + x_7 \ge \forall$ (t $\exists x_1 + \exists x_7 \le \Delta$	()
$X_{\gamma} \ge \frac{\gamma}{\gamma}$ (f $X_{\gamma} \le \frac{\pi}{\gamma}$	(٣
ر از تشکیل تابع لاگرانژ در برنامهریزی غیرخطی، شرایط کان _ تاکر کدام است؟	۱۳ پس
لازم و کافی برای بهینه بودن یک جواب ۲۰۰۰ ۲) لازم و کافی برای امکان پذیری یک جواب	()
لازم برای بهینه بودن یک جواب ۴ ۴ ۲۰ کافی برای بهینه بودن یک جواب	(٣
.ول بهینه زیر برای یک مسئله بهینهسازی ماکزیممسازی مفروض است. کدامیک از موارد زیر، ن <u>می تواند</u> یک	۱۴- ج
ش گموری (کسری) برای این مسئله باشد؟	بر
$\frac{z x_1 x_{\gamma} x_{\psi} x_{\varphi} RHS}{x_{\psi} + \psi x_{\varphi} \ge 1}$	()
$X_1 \circ Y \circ \frac{q}{\epsilon} \frac{1}{\epsilon} = \frac{q}{\epsilon}$ $\Upsilon X_{\tau} + X_{\epsilon} \ge T$	(۲
$\begin{vmatrix} \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{\Delta} & 1 & 1 \mathbf{\Delta} \\ \mathbf{X}_{\mathbf{r}} + \mathbf{X}_{\mathbf{F}} \ge 1 \end{vmatrix}$	(٣

- 1۵ – در جدول زیر هزینه تخصیص چهار کار به ۴ نفر متفاوت مشخص شده است کمترین هزینه ممکن برای تخصیص تمام
- کارها به افراد به روش شاخه و کران (با قاعده بهترین حد) کدام است؟ (به هر فرد فقط یک کار تخصیص داده می شود.)
 - 11 ()
 - 10 (1
 - 18 (٣

 $x_r + x_r \ge r$ (f

17 (4

کار نفر	١	۲	٣	۴
Α	١٥	۶	۵	۶
В	۵	۴	۶	۷
С	۴	۲	۴	٣
D	٣	۵	٣	۷

 $\frac{17}{10}$ (7

 $\frac{T\Lambda}{TT}$ (T

17 (F

خلاصه اطلاعات حاصل از یافته های یک نمونه تصادفی از یک جمعیت نرمال، به شرح زیر است: -18 و n = n علاقمند به آزمون $H_{\circ}: \mu = 1$ در مقابل $H_{\circ}: \mu > 1$ در سطح Δ الاستیم. $\overline{x} = 1$ مقدار $\overline{x} = 1$ ، $\sigma^{7} = 9$ آزمون چقدر است؟ 0/108T (1 ·/1014 (Y ·/XF18 (8 ·/1471 (4 فرض کنید X_1, \cdots, X_{n_X} یک نمونه تصادفی از توزیع $N(\mu_x \; , \sigma_x^r)$ و $N(\mu_x \; , \sigma_x^r)$ یک نمونه تصادفی از توزیع -۱۷ $\left. \begin{array}{l} H_{\circ}:\sigma_{x}^{Y}=\mathsf{T}\sigma_{y}^{Y} \\ H_{\circ}:\sigma_{x}^{Y}>\mathsf{T}\sigma_{y}^{Y} \end{array}
ight\}
ight\} > \mathcal{N}(\mu_{y} \circ \sigma_{y}^{Y})$ $\left| \frac{\overline{x} - \overline{y} - (\mu_x - \mu_y)}{S_p \sqrt{\frac{1}{p} + \frac{1}{p}}} \right| \quad (1)$ $\frac{\Upsilon \left(n_{x}-\mathfrak{l}\right)S_{x}^{\Upsilon }}{\left(n_{v}-\mathfrak{l}\right)S_{v}^{\Upsilon }} (\Upsilon$ $\frac{\overline{\mathbf{x}} - \overline{\mathbf{y}} - (\mu_{\mathbf{x}} - \mu_{\mathbf{y}})}{\mathbf{S}_{\mathbf{p}} \sqrt{\frac{1}{(n-1)} + \frac{1}{(n-1)}}}$ (* $\frac{S_x^r}{r S^r}$ (r ۱۸- اگر رابطه بین x و y به صورت E(y_i) = θ(x_i + x^۲_i) باشد. براساس دادههای زیر، بر آورد حداقل مربعات θ چقدر است؟ x:1 7 7 $\frac{q}{r}$ (1 y: 4 1 14

- اگر $X_1, ..., X_n$ یک نمونه تصادفی از جامعهای با توزیع نمایی با پارامتر λ باشـد ($\circ \leq x_1, \ldots, x_n$). کـدام بر آوردگر، یک بر آوردگر نااریب برای واریانس جامعه است؟

- ۲۰ فرض کنید X_n تا X_n یک نمونه تصادفی از توزیع زیر باشد. بر آورد ماکزیمم درستنمایی پارامتر θ کدام است? $f(\mathbf{x}) = \frac{1}{Y}e^{-\frac{|\mathbf{x}-\theta|}{Y}} - \infty \le \mathbf{x} \le \infty$ () میانه نمونه تصادفی از توزیع نرمال استاندارد است و متغیر تصادفی \mathbf{y} به صورت () میانه تعاوی می تعریف می شود. () میانه تصادفی \mathbf{Y}_1 یا تعریف می شود. () میان یک نمونه تصادفی از توزیع نرمال استاندارد است و متغیر تصادفی \mathbf{y} به صورت () میانه تصادفی می کنیم. اگر اندازهٔ این () تعریف می کنیم. اگر اندازهٔ این () میانه نمونه، یعنی \mathbf{n} را به سمت بی نهایت میل دهیم. کدام مورد درست است؟ () مید ریاضی \mathbf{Y} به صور موزیع \mathbf{Y} صادق نخواهد بود. () مید ریاضی \mathbf{Y} به صور میل می کند. () مید ریاضی \mathbf{Y} به صور میل می کند. () مید ریاضی \mathbf{Y} به صور میل می کند. () واریانس \mathbf{Y} نابت می ماند.

اگر $X_1, ..., X_n$ یک نمونه تصادفی nتایی از توزیع پواسون با پارامتر λ بوده و \circ $n \ge n$ باشد، یک دامنهٔ اطمینان ($X_1, ..., X_n$) اگر \wedge (1- α) ای برای پارامتر λ کدام است؟

$$\overline{X} + \frac{Z_{\underline{\alpha}}^{\tau}}{\underline{\gamma}n} \pm \frac{Z_{\underline{\alpha}}}{\underline{\gamma}n} \sqrt{\underline{\gamma}n\overline{x} + Z_{\underline{\alpha}}^{\tau}} \quad (\gamma \qquad \qquad \overline{X} \pm Z_{\underline{\alpha}} \sqrt{\frac{\lambda}{n}} \quad (\gamma \qquad \qquad \overline{X} \pm Z_{\underline{$$

از یک جمعیت متناهی با عناصر متمایز $\{C_1, C_7, \cdots, C_N\}$ یک نمونه n < N تایی بدون جایگذاری انتخاب می شود. $\{C_1, C_2, \cdots, C_N\}$ میانگین نمونه باشد، مقدار \overline{X} میانگین نمونه باشد، مقدار \overline{X} کدام است؟ ($\overline{\sigma}^7$ واریانس جمعیت است.)

$$\frac{\sigma^{r}}{n} \left(\frac{N-n}{N}\right) (r) \qquad \qquad \frac{\sigma^{r}}{n} \left(\frac{N-n}{N-1}\right) (r)$$

$$\frac{\sigma^{r}}{N} (r) \qquad \qquad \frac{\sigma^{r}}{n} \left(\frac{N-n}{N-1}\right) (r)$$

۲۴ – فرض کنید در محدودهٔ [۱, ۰]، n نقطه به تصادف انتخاب میکنیم. اگر متغیر تصادفی X فاصله اولین نقطه (نزدیکترین نقطه) تا مبدأ مختصات باشد، تابع چگالی احتمالی X کدام است؟

$$f_{x}(x) = \begin{cases} Yx & 0 \le x \le 1 \\ 0 & \text{index} \end{cases} (Y \qquad \qquad f_{x}(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & \text{index} \end{aligned} (N)$$

$$f_{x}(x) = \begin{cases} n(1-x)^{n-1} & 0 \le x \le 1 \\ 0 & \text{index} \end{aligned} (Y \qquad \qquad f_{x}(x) = \begin{cases} -Yx + Y & 0 \le x \le 1 \\ 0 & \text{index} \end{aligned} (Y)$$

صفحه ۸

۲۵ – اگر x دارای تابع توزیع زیر باشد، امید x کدام است؟

$$\begin{split} \mathbf{F}(\mathbf{x}) = \frac{1}{1 + e^{-(\mathbf{x} - \theta)}} \quad , \ -\infty < \mathbf{x} < \infty \\ & \theta \quad (1) \\ & \mathbf{Y} \theta \quad (7) \\ & \theta^{\mathsf{Y}} \quad ($$

۲۸- فرض کنید X ، Y و Z متغیرهای تصادفی مستقل و توزیع هریک دارای تابع چگالی احتمال زیـر باشـد. احتمـال آن که حداکثر یکی از این متغیرهای تصادفی دارای مقدار بیشتر از ۴ باشد، کدام است؟

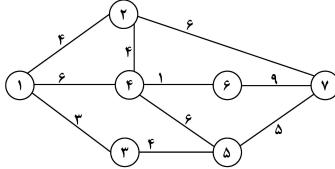
$$\mathbf{f}(\mathbf{x}) = \begin{cases} \frac{1}{\mathbf{x}^{\mathsf{T}}} & 1 < \mathbf{x} < \infty \\ \\ \mathbf{x}^{\mathsf{T}} & \\ \mathbf{x}^{\mathsf{T}} & \\ \mathbf{x}^{\mathsf{T}} & \\ \mathbf{x}^{\mathsf{T}} & \mathbf{x}^{\mathsf{T}} \end{cases}$$

 $\frac{7V}{77} (1)$ $\frac{7\Delta}{77} (7)$ $\frac{7\Delta}{77} (7)$ $\frac{7V}{77} (7)$ $\frac{7V}{77} (7)$

- ۲۹ جعبهای شامل ۹۹۸ مهره سفید و ۲ مهره سبز است. ۵۰۵ مهره به تصادف، یک به یک و با جایگذاری از این جعبه انتخاب می کنیم. اگر X نمایانگر تعداد مهرههای سبز باشد، مقدار $\frac{P(X = 1)}{P(X = 1)}$ کدام است؟ 4 (1
 - ۲ (۲
 - $\frac{1}{4}$ (r
 - $\frac{1}{r}$ (r
- احمد و حامد یک جفت تاس سالم را یکی پس از دیگری به ترتیب پرتاب میکنند. و هرکدام که زودتر مجموع ۷ یا ۸ را -۳۰ مشاهده کنند، برنده اعلام می شوند. اگر پرتاب اول را احمد انجام دهد، احتمال برد احمد کدام است؟
 - $\frac{\varphi}{11}$ (1 $\frac{\Delta}{11}$ (7 78 <u>81</u> (۳ $\frac{7\Delta}{81}$ (f

طراحی سیستمهای صنعتی:

۳۱ - قرار است یک آنتن موبایل برای خدماترسانی به ۸ منطقه زیر، مکان یابی و استقرار یابد. محل استقرار این آنــتن، كدام نقطه است؟


 $p_1 = (1, 1), p_1 = (11, 1), p_2 = (0, 10), p_2 = (11, 11), p_2 = (11, 2), p_3 = (11, 2), p_4 = (2, 11), p_4 = (2, 11), p_5 = (11, 2), p_4 = (2, 11), p_5 = (2, 11), p_5$ $(9, \lambda)$ ()

- (Λ, Λ) (7
- (٧, ۶) (٣
- (9, V) (4

۳۲ - چهار تسهیل در چهار رأس یک مستطیل به طول ۱۰ متر و عرض ۴ متر قرار گرفتهاند. اگر یک تسهیل جدیـد بـه این تسهیلات موجود اضافه شود، به تر تیب، مکان بهینه این تسهیل جدید کدام است و کل هزینه جابه جایی براساس مسافت خط مستقيم چقدر مىشود؟ (وزن تسهيل جديد با وزن تسهيلات موجود را يكسان و برابـر بــا ۲ درنظر بگیرید.)

- $\Delta \mathcal{F}$, (Υ, Δ) (1
- $\Delta \beta$, (Δ, T) (T
- $\Lambda\sqrt{\Upsilon q}$, (Υ, Δ) (T
- $\Lambda\sqrt{19}$, (Δ, T) (4

- ۳۳- شبکه زیر، ۷ مکان بالقوه برای استقرار نمایندگی فروش یک شرکت در مناطق مختلف یک شهر را نشان میدهد. قرار است فاصله پوشش هر منطقه، حداکثر ۶ کیلومتر باشد. براساس نظر مدیریت شرکت، منطقه ۲ برای استقرار یکی از نمایندگیهای فروش انتخاب میشود. برای پوشش کامل مناطق شهر، نیاز به چند نمایندگی فروش دیگر است و با احتساب منطقه ۲، هزینه استقرار کل نمایندگیهای فروش چقدر است؟
 - ۱) ۲ و ۲۱۰۰
 - ۲) ۱ و ۲۲۰۰
 - ۳) ۱ و ۲۱۰۰

منطقه	١	۲	٣	۴	۵	9	۷
هزينه استقرار	900	٨٥٥	1400	Y o o	1800	1100	۵۰۰

۳۴ – در یک مسئله مکانیابی تک تسهیلاتی، تابع هزینه برای استقرار تسهیل جدید بین تسهیلات موجود بهصورت زیر است. اگر از فاصله اقلیدسی استفاده شود، کران پایین هزینه حدوداً چقدر است؟

$$z = \mathbf{Y} | \mathbf{x} - \mathbf{y} | + \mathbf{f} | \mathbf{x} - \mathbf{y} | + | \mathbf{x} - \mathbf{f} | + \mathbf{y} | \mathbf{x} - \mathbf{\Delta} | + | \mathbf{y} - \mathbf{y} | + \mathbf{\Delta} | \mathbf{y} - \mathbf{f} | + \mathbf{f} | \mathbf{y} - \mathbf{\Delta} |$$

- ۱۳ (۱
- 18 (1
- ۱۹ (۳
- TV (F

1) 7×7
1) 7×7
7) 7×7
7) 7×7
7) 7×7

۳۵- در یک مسئله مکانیابی پوشش مجموعه، ماتریس پوشش بهصورت جدول زیر، نشان دادهشده است که در آن، i گره پوششیافته و j گره پوشاننده است. با اعمال قواعد سادهسازی سطر و ستون، ماتریس نهایی چند در چند میشود؟

j i	١	۲	٣	۴	۵	۶	۷
١	١	١	١	١	0	١	o
۲	١	١	o	۱	o	١	١
٣	١	o	١	١	١	o	o
۴	١	١	١	١	١	١	o
۵	o	o	١	١	١	o	١
۶	١	١	o	۱	o	١	o
v	o	1	0	o	•	o	١

۳۶– یک مسئله مکانیابی مرکز چندتسهیلاتی با ۲ تسهیل جدید و ۵ نقطه تقاضا را درنظر بگیرید. هزینه حمـلونقـل بین تسهیلات جدید و نقاط تقاضا برابر w_{ij} و هزینه حملونقل بین تسهیلات جدید v_{jk} اسـت و لازم اسـت در مکانیابی تسهیلات جدید، حداکثر فاصله بین تسهیلات جدید و نقـاط تقاضـا برابـر c_{ij} و حـداکثر فاصـله بـین تسهیلات جدید برابر d_{jk} درنظر گرفته شود. مدل برنامهریزی ریاضی مسئله با تـابع هـدف مینـیممسـازی و بـا استفاده از فواصل اقلیدسی، دارای چند محدودیت است؟

- 10 (1
- 11 (۲
- ۲۰ (۳
- 77 (۴
- ۳۷- یک مسئله مکانیابی مرکز تکوسیلهای با فاصله متعامد تبدیل به مسئله معادل با فاصله چبیشف شده است. در این مسئله ابتدا تسهیل به نقاط تقاضا میرود و سپس مشتریان را به نزدیک ترین مرکز درمانی انتقال میدهند.
 ۱۵ نقطه (r,s) دورانیافته نقطه (x,y) است و از حل زیرمسئلههای کمینه سازی (f₁(r) و (s) و f₁(r) به ترتیب مقادیر بهینه ۳ و ۶ برای این دو زیرمسئله کمینه سازی برابر ۲۰ و ۴ بهتر تیب مقادیر بهینه ۳ و ۲ سازی ۲۰ میرود و در می تواند مختصات مکان به مسئله معادل با فاصله چبی شف شده است. در این مسئله ابتدا تسهیل به نقاط تقاضا میرود و سپس مشتریان را به نزدیک ترین مرکز درمانی انتقال میدهند.

مختصات نقاط تقاضا	(1,17)	(٣,٧)	(9,1A)	(19,9)
هزينه حملونقل بين وسيله جديد و نقاط تقاضا	۲	۲	٣	١
فاصله بین نقاط تقاضا تا نزدیکترین مرکز درمانی	۴	٣	۲	٣

۳۸- سه تجهیز در کارگاهی در مکانهای (۰,۰) = p₁ (۶,۸) = p₇ و (۴,۲) = p₇ قرار گرفتهاند. قرار است یک تجهیز جدید دیگر به کارگاه اضافه شود. مختصات نقطه بهینه براساس مجذور فاصله مستقیم، برابر (۴,۴) شده است. اگر نقطه بهینه قابل استفاده نباشد و به مختصات طولی و عرضی آن یک واحد اضافه شود، میزان افزایش در هزینه بهینه ۴ واحد خواهد بود. کدام مورد، روابط بین حجم مراودات بین تجهیـز جدیـد و تجهیـزات موجـود را بهدرستی نشان میدهد؟

$$\begin{split} \mathbf{w}_{1} &= \circ/\mathcal{P} \quad \mathbf{w}_{\tau} = \circ/\mathcal{P} \quad \mathbf{g} \quad \mathbf{w}_{\tau} = \circ/\mathcal{N} \quad \mathbf{w}_{\tau} = \circ/\mathcal{P} \quad \mathbf{g} \quad \mathbf{$$

- ۳۹- در یک مسئله مکانیابی تک تسهیلاتی با فاصله اقلیدسی، تسهیلات موجود با وزنهای برابر در مکانهای (۰,۰)، (۰,۱۰)، (۰,۰) و (۱۲٫۶) قرار دارند. اگر مکان بهینه تسهیلات جدید نقطه (۴,۲) باشد، کمترین مقدار تابع هدف هزینه کل کدام است؟
 - 27/28 (1
 - ۲۵/۳۲ (۲
 - ۲۵/۱۷ (۳
 - 74/8° (4

برای دادههای زیر، جواب بهینه دو تسهیل جدید با فاصله مجذور اقلیدسی کدام است؟	-4+
$\mathbf{W} = \begin{bmatrix} \mathbf{Y} & \mathbf{Y} & \circ \\ \mathbf{y} & \mathbf{Y} & \mathbf{F} \end{bmatrix}$	
·· [\ Y 4]	
$\mathbf{P}_{1} = (\circ, \circ)$, $\mathbf{P}_{\mathbf{T}} = (1, \Delta)$ $\mathbf{P}_{\mathbf{T}}(\mathbf{T}, 1\circ)$, $\mathbf{V}_{\mathbf{1T}} = \mathbf{T}$	
$(1/1, 0/1) \in (0, 17, 1, 1/2) \in (0, 17, 1, 1/2) = (1/1, 0/1) = (1/1, 0/1)$	
$(1/17, 7/8)$ $(7/1, 0/97)$ (f $(\circ/\Lambda\Lambda, 7/97)$ $(1/\Lambda\Delta, 0/97)$ (T	
در مسئله مکانیابی تک تسهیلاتی با فاصله اقلیدسی، مکان ۳ تسهیل موجود با وزنهای برابر رئوس مثلث	-41
متساویالساقین ABC است که در آن، هریـک از زوایـای C و B برابـر ۲۵ درجـه هســتند. اگـر محـل تلاقـی	
نیمسازهای زاویههای داخلی نقطه D در داخل مثلث باشد، مکان بهینه تسهیل جدید کدام است؟	
Α(
В (۲	
С(٣	
D (۴	
کاربرد عدد استرلینگ در حل کدام نوع از مسائل است؟	-47
 چیدمان انبار مکانیابی تخصیص تخصیص نمایی پوشش 	
در مسئله مکانیابی مرکز تک تسهیلاتی با فاصله مجذور اقلیدسی، نقطه بهینه (۱٫۴) با تابع هدف ۱۶ است. اگر فاصله	-42
بهصورت اقلیدسی منظور شود، بهترتیب، نقطه بهینه و تابع هدف کدام است؟	
 ۲) (۲ و ۱) و ۶ ۲) (۲ و ۱) و ۴ 	
٣) (۴ و ۱) و ۱۶ (۴ و ۱) و ۴	
فلسفه الگوریتم ابتکاری جایابی زوجی با تندترین شیب برای حل مسئله QAP، جابهجایی زوجی با بیشترین	-44
کاهش در کدام مورد است؟	
 هزينه كل ۲) فاصله بين دو تجهيز 	
۳) هزينه بين دو تجهيز	
منظور از مجموعه تراز K، مجموعه تمام نقاطی است که	-40
) مقدار تابع هدف بهازای آنها حداقل برابر ${ m K}$ باشد ${ m (Y)}$ مقدار تابع هدف بهازای آنها تابعی از ${ m K}$ باشد (

۳) مقدار مینیمم تابع هدف بهازای آنها برابر K باشد ۴) مقدار تابع هدف بهازای آنها حداکثر برابر K باشد

		*		_
	2000 5398 5793 5793 5793 5793 5793 5793 5993 5902 9002 9002 9012 9012 9012 9012 9012 9	8		
	5040 5432 5432 5432 5432 5432 5432 5432 5433 5453 545	è.		
	5000 5478 5478 5478 5478 5478 5478 5478 5478	2	ę	I
	5120 5317 5317 5317 5317 5317 5317 5317 5317	ė	Ē	
	5160 5364 5364 5364 5364 5364 5364 5373 5364 5373 5364 5373 5364 5373 5364 5373 5364 5373 5364 5373 5364 5373 5375 5375 5375 5375 5375 5375 537	ż	سطح زير منحني نرمل استائدارد	
	5199 5199 53987 53987 53987 53987 53987 53984 59115 5914 5914 5914 5914 5914 5914 59	ż	ķ	
	5239 5636 5636 5636 5636 5636 5636 5636 56	8	Ë. G	
	5073 5673 5673 5673 5604 5604 5604 5604 5004 5794 5004 5911 5912 5912 5912 5912 5912 5912 5912	5	'	
	2 3980 2 3980	ż	- 1	
	L 1999 L 199	3		×
		-1		
	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	=		
	3077 1486 1486 1486 1486 1486 1486 1487 1489 1489 1489 1489 1489 1489 1489 1489	-10	-	
	4.314 2.3520 2.132 2.132 2.132 2.132 2.132 2.132 1.1953 1.1953 1.1953 1.1953 1.1955 1.1752 1.1754 1.1755 1.1754 1.1755 1.1754 1.1755 1.1754 1.17555 1.17555 1.17555 1.175555 1.175555 1.175555555555	5	نزيع	
	12.71 4.803 3.1803 2.776 2.571 2.262 2.262 2.262 2.262 2.100 2.110 2.100 2.110 2.100 2.110 2.1000 2.1000 2.1000 2.1000 2.1000 2.1000 2.1000 2.1000 2.10000 2.10000 2.10000000000	.025	بحرائي ترزيح	
11	51.42 6.545 7.545 7.5467 7.5467 7	þ	مقادير	
	61.66 9.925 5.941 4.604 4.012 1.9915 1.9915 1.9917 1.991	200.		
	***************************************	\$		
	4E-5 0.010 0.0206 0.0411 0.206 0.411 0.206 0.4075 0.205 2.053 2.053 2.053 2.565 2.153 2.565 2.153 2.565 2.155 2.565 2.155 2.565 2.155 2.565 2.155 2.565 2.1555 2.155 2.155 2.1555 2.1555 2.1555 2.1555	.995		
	0,00001 0,11401 0,11401 0,2971 0,2971 0,2970 1,21700 1,21700 1,2465 2,20879 2,2097 2,209	.990		
	0.0009 0.2150 0.2150 0.2150 0.2150 0.2150 1.2377 1.2377 1.2377 2.2700 3.2157 3.2157 5.2387 5.2387 1.25977 1.25977 1.25977 1.25977 1.25977 1.25977 1.259777 1.25977	-	کاي	
		.975	z	
	0.0039 0.1025 0.1025 0.11635 1.1454 1.16353 2.1372 2.1372 2.1325 3.3251	950	مقلاير بحراني توزيع مربع كاي	
	33414 7,8147 7,8147 9,4877 11,070 12,597 13,597 13,597 13,597 13,597 13,597 22,562 23,567 24,567 24,567 24,567 25,577 25,5677 25,5677 25,5677 25,5677 25,56777 25,56777775	.050	ند ی	
		8	نلاير ب	
	5.0238 5.0238 11.1444 11.1444 11.1444 11.1444 11.1444 11.1444 11.1444 11.1444 11.1444 11.1444 11.1444 11.1444 11.1444 11.153 21.154 21.155 21.154 21.155 21.155 21.154 21.1555 21.1555 21.1555 21.1555 21.1555 21.1555 21.1555 21.1555 21	025	2.	
	6.6349 9.2103 11.2276 15.086 15.086 16.277 20.090 24.724 22.1655 22.1655 22.1655 22.1655 22.1655 23.27688 29.1455 30.577 31.999 31.4055 36.190 34.2578 35.190 34.2578 46.262 46.2657 50.8962 49.287	.010		
		-		
	7,879 10.596 10.596 16,749 16,749 16,749 16,749 21,558 22,259 22,259 22,259 23,271 10,558 46,758 46,758 46,758 47,759 47,	.005		
				the second se